Identify the diamagnetic octahedral complex ions from below ;
A. [Mn(CN)\(_6\)]\(^{3-}\)
B. [Co(NH\(_3\))\(_6\)]\(^{3+}\)
C. [Fe(CN)\(_6\)]\(^{4-}\)
D. [Co(H\(_2\)O)\(_3\)F\(_3\)]
Choose the correct answer from the options given below :
Let's analyze each complex ion to determine its magnetic properties. A diamagnetic complex has no unpaired electrons. diamagnetic complex ion has all its electrons paired. Let's analyze each complex:
A. [Mn(CN)₆]³⁻:
B. [Co(NH₃)₆]³⁺:
C. [Fe(CN)₆]⁴⁻:
D. [Co(H₂O)₃F₃]:
Thus, the diamagnetic complexes are B and C.
Final Answer: The final answer is B and C.
Werner’s coordination theory in 1893 was the first attempt to explain the bonding in coordination complexes. It must be remembered that this theory was put forward before the electron had been discovered by J.J. Thomson in 1897, and before the electronic theory of valency. Werner did not have any of the modern instrumental techniques and all his studies were made using simple experimental techniques. Werner was able to explain the nature of bonding in complexes and he concluded that in complexes, the metal shows two different sorts of valency: primary and secondary. Primary valences are normally ionisable whereas secondary valences are non-ionisable.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).