
Determine the Reaction with Reagent X:
The starting compound, CH3 − CH2 − CH2 − CH2 − Br, is a 1-bromobutane.
When treated with concentrated alcoholic NaOH at 80°C, an elimination reaction (dehydrohalogenation) occurs, leading to the formation of an alkene.
The product after elimination is CH3 − CH = CH − CH3 (1-butene).
Reaction with Reagent Y:
After the formation of 1-butene, adding HBr in the presence of acetic acid will convert it back into an alkyl halide by electrophilic addition.
The final product is 1-bromo-2-butene.
Conclusion:
The correct set of reagents for X and Y is:
X = conc. alc. NaOH, 80°C
Y = HBr/acetic acid
This corresponds to Option (3).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
