




The given sequence involves the following steps:
Step 1: Friedel-Crafts Acylation
Benzene (\(\text{C}_6\text{H}_6\)) reacts with acetyl chloride (\(\text{CH}_3\text{COCl}\)) in the presence of \(\text{AlCl}_3\), an electrophilic catalyst. This forms acetophenone (\(\text{C}_6\text{H}_5\text{COCH}_3\)) as compound \(A\):
\[\text{C}_6\text{H}_6 + \text{CH}_3\text{COCl} \xrightarrow[\text{AlCl}_3]{} \text{C}_6\text{H}_5\text{COCH}_3 \, (A).\]
Step 2: Clemmensen Reduction
Acetophenone (\(\text{C}_6\text{H}_5\text{COCH}_3\)) undergoes Clemmensen reduction using zinc amalgam (\(\text{Zn–Hg}\)) and hydrochloric acid (\(\text{HCl}\)). The carbonyl group (\(-\text{CO}\)) is reduced to a methylene group (\(-\text{CH}_2-\)), resulting in ethylbenzene (\(\text{C}_6\text{H}_5\text{CH}_2\text{CH}_3\)) as compound \(B\):
\[\text{C}_6\text{H}_5\text{COCH}_3 \xrightarrow[\text{Zn–Hg, HCl}]{} \text{C}_6\text{H}_5\text{CH}_2\text{CH}_3 \, (B).\]
Step 3: Acidic Oxidation
Ethylbenzene reacts with \(\text{H}^+\) under oxidation conditions to form acetophenone again. This completes the reaction cycle.
Final Products:
\(A = \text{C}_6\text{H}_5\text{COCH}_3\) (Acetophenone).
\(B = \text{C}_6\text{H}_5\text{CH}_2\text{CH}_3\) (Ethylbenzene).
Conclusion: The correct identification of \(A\) and \(B\) is given in option \((3)\).
Final Answer: (3).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to