How much electricity in terms of Faraday is required to produce
(i) 20.0 g of Ca from molten CaCl2.
(ii) 40.0 g of Al from molten Al2O3.
(i) According to the question,
CA2+ + 2e-1 \(\rightarrow\) Ca
40 g
Electricity required to produce 40 g of calcium = 2 F
Therefore, electricity required to produce 20 g of calcium =\(\frac{2 \times 20}{4}\) F
= 1 F
(ii) According to the question,
Al3+ + 3e- \(\rightarrow\) Al
27 g
Electricity required to produce 27 g of Al = 3 F
Therefore, electricity required to produce 40 g of Al = \(\frac{3 \times 40}{27}\) F
= 4.44 F
Concentration of KCl solution (mol/L) | Conductivity at 298.15 K (S cm-1) | Molar Conductivity at 298.15 K (S cm2 mol-1) |
---|---|---|
1.000 | 0.1113 | 111.3 |
0.100 | 0.0129 | 129.0 |
0.010 | 0.00141 | 141.0 |
Column I | Column II |
---|---|
i. Lead storage cell | d. Inverter |
ii. Mercury cell | b. Apollo Space Programme |
iii. Dry cell | c. Wrist watch |
iv. Fuel cell | a. Wall clock |
Rupal, Shanu and Trisha were partners in a firm sharing profits and losses in the ratio of 4:3:1. Their Balance Sheet as at 31st March, 2024 was as follows:
(i) Trisha's share of profit was entirely taken by Shanu.
(ii) Fixed assets were found to be undervalued by Rs 2,40,000.
(iii) Stock was revalued at Rs 2,00,000.
(iv) Goodwill of the firm was valued at Rs 8,00,000 on Trisha's retirement.
(v) The total capital of the new firm was fixed at Rs 16,00,000 which was adjusted according to the new profit sharing ratio of the partners. For this necessary cash was paid off or brought in by the partners as the case may be.
Prepare Revaluation Account and Partners' Capital Accounts.
Galvanic cells, also known as voltaic cells, are electrochemical cells in which spontaneous oxidation-reduction reactions produce electrical energy. It converts chemical energy to electrical energy.
It consists of two half cells and in each half cell, a suitable electrode is immersed. The two half cells are connected through a salt bridge. The need for the salt bridge is to keep the oxidation and reduction processes running simultaneously. Without it, the electrons liberated at the anode would get attracted to the cathode thereby stopping the reaction on the whole.