How many different words can be formed by jumbling the letters in the word in which no two $S$ are adjacent ?
Updated On: Jul 6, 2022
$8\cdot\,^6C_4\cdot\,^7C_4$
$6\cdot 7 \cdot\,^8C_4$
$6\cdot 8\cdot\,^7C_4$
$7\cdot\,^6C_4\cdot\,^8C_4$
Hide Solution
Verified By Collegedunia
The Correct Option isD
Solution and Explanation
First of all arrange $M, I, I, I, I, P, P$
This can be done in $\frac{7\,!}{4\,!\, 2\,!}$ ways.
$\times M \times I\times I\times I\times I\times P\times P\times$
If we place is $S$ at any of the $X$ places then no two $S??$ are together.
$\therefore$ total number of ways $=\frac{7\,!}{4\,!\, 2\,!}\cdot^{8}C_{4}$$=7\times\,^{6}C_{4}\times\,^{8}C_{4}$ ways.