Step 1: The magnetic field intensity \( H \) for an infinitely long coaxial transmission line can be determined using Ampère’s Circuital Law:
\[
\oint_C \mathbf{H} \cdot d\mathbf{l} = I_{\text{enc}}
\]
Step 2: Consider a circular Amperian loop of radius \( l \), where the enclosed current for \( 0 \leq l \leq a \) is:
\[
I_{\text{enc}} = I \frac{l^2}{a^2}
\]
Step 3: By applying Ampère’s Law:
\[
H \cdot (2\pi l) = I \frac{l^2}{a^2}
\]
Solving for \( H \):
\[
H = \frac{I}{2\pi a^2}
\]