Question:

$\displaystyle \lim_{h \to 0}$ $\frac{\left(a+h^{2}\right)sin\left(a+h\right)-a^{2}\,sin\,a}{h}=$

Updated On: Jul 6, 2022
  • $a^2\,cos\,a$
  • $a^{2}\,cos\,a+2a\,sin\,a$
  • $a^{2}\,sin\,a+cos\,a$
  • $a\,cos\,a+sin\,a$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We have, $\displaystyle \lim_{h \to 0}$$\frac{\left(a+h^{2}\right)sin\left(a+h\right)-a^{2}\,sin\,a}{h}$ $=\displaystyle \lim_{h \to 0}$ $\frac{\left(a^2+h^{2}+2ah\right)\left[sin\,a\,cos\,h+cos\,a\,sin\,h\right]-a^{2}\,sin\,a}{h}$ $=\displaystyle \lim_{h \to 0}$$\bigg[\frac{a^{2}\,sin\,a\left(cos\,h-1\right)}{h}+\frac{a^{2}\,cos\,a\,sin\,h}{h}$ $+\left(h+2a\right)\left(sin\,a\,cos\,h+cos\,a\,sin\,h\right)\bigg]$ $=\displaystyle \lim_{h \to 0}$ $\left[\frac{a^{2}\,sin\,a\left(-2\,sin^{2}\, \frac{h}{2}\right)}{\frac{h^{2}}{2}}\cdot \frac{h}{2}\right]+$ $\displaystyle \lim_{h \to 0}$$\frac{a^{2}\,cos\,a\,sin\,h}{h}$ $+\displaystyle \lim_{h \to 0}(h+2a)sin(a+h)$ $=a^{2}\,sin\,a \times 0+a^{2}\,cos\,a\left(1\right)+2a\,sin\,a$ $=a^{2}\,cos\,a+2a\,sin\,a$.
Was this answer helpful?
0
0

Top Questions on limits and derivatives

View More Questions

Concepts Used:

Limits And Derivatives

Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.

Limit of a Function

Limits Formula:

Limits Formula
 Derivatives of a Function:

derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.

 Derivatives of a Function

Properties of Derivatives:

Properties of Derivatives

Read More: Limits and Derivatives