Given the reaction at 300 K: 
with \(\Delta G^\circ = -15 \, kJ \, mol^{-1}\). Calculate the value of log \(K\) for the reaction at the same temperature (R = 8.3 J \(K^{-1} \, mol^{-1}\)).
Step 1: Convert \(\Delta G^\circ\) from \(kJ/mol\) to \(J/mol\). \[ \Delta G^\circ = -15 \, kJ/mol \times 1000 = -15000 \, J/mol \] Step 2: Use the relationship between \(\Delta G^\circ\) and \(K\). The relationship is given by the equation: \[ \Delta G^\circ = -RT \ln K \] Where \( R = 8.3 \, J \, K^{-1} \, mol^{-1} \) and \( T = 300 \, K \).
Step 3: Solve for \(\ln K\). \[ \ln K = -\frac{\Delta G^\circ}{RT} = -\frac{-15000}{8.3 \times 300} \approx 6.02 \]
Step 4: Convert \(\ln K\) to \(\log_{10} K\) (common logarithm). \[ \log_{10} K = \frac{\ln K}{\ln 10} \approx \frac{6.02}{2.3026} \approx 2.62 \]
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))