We start by analyzing the expression \( x^2 + y^2 + 2xy \sin \alpha \). This expression can be recognized as the expansion of \( (x + y \sin \alpha)^2 \), which is always non-negative.
Given that \( \cos^{-1} x - \sin^{-1} y = \alpha \), the values of \( x \) and \( y \) are restricted to the interval \([-1, 1]\), ensuring the values lie within the principal range of the inverse trigonometric functions.
Now, let’s rewrite the expression:
\[ x^2 + y^2 + 2xy \sin \alpha = (x + y \sin \alpha)^2. \]
The minimum value of a square term \( (x + y \sin \alpha)^2 \) is 0, which occurs when \( x + y \sin \alpha = 0 \).
Thus, the minimum value of \( x^2 + y^2 + 2xy \sin \alpha \) is 0.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.