We start by analyzing the expression \( x^2 + y^2 + 2xy \sin \alpha \). This expression can be recognized as the expansion of \( (x + y \sin \alpha)^2 \), which is always non-negative.
Given that \( \cos^{-1} x - \sin^{-1} y = \alpha \), the values of \( x \) and \( y \) are restricted to the interval \([-1, 1]\), ensuring the values lie within the principal range of the inverse trigonometric functions.
Now, let’s rewrite the expression:
\[ x^2 + y^2 + 2xy \sin \alpha = (x + y \sin \alpha)^2. \]
The minimum value of a square term \( (x + y \sin \alpha)^2 \) is 0, which occurs when \( x + y \sin \alpha = 0 \).
Thus, the minimum value of \( x^2 + y^2 + 2xy \sin \alpha \) is 0.
Prove that:
\( \tan^{-1}(\sqrt{x}) = \frac{1}{2} \cos^{-1}\left( \frac{1 - x}{1 + x} \right), \quad x \in [0, 1] \)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)