We start by analyzing the expression \( x^2 + y^2 + 2xy \sin \alpha \). This expression can be recognized as the expansion of \( (x + y \sin \alpha)^2 \), which is always non-negative.
Given that \( \cos^{-1} x - \sin^{-1} y = \alpha \), the values of \( x \) and \( y \) are restricted to the interval \([-1, 1]\), ensuring the values lie within the principal range of the inverse trigonometric functions.
Now, let’s rewrite the expression:
\[ x^2 + y^2 + 2xy \sin \alpha = (x + y \sin \alpha)^2. \]
The minimum value of a square term \( (x + y \sin \alpha)^2 \) is 0, which occurs when \( x + y \sin \alpha = 0 \).
Thus, the minimum value of \( x^2 + y^2 + 2xy \sin \alpha \) is 0.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: