We start by analyzing the expression \( x^2 + y^2 + 2xy \sin \alpha \). This expression can be recognized as the expansion of \( (x + y \sin \alpha)^2 \), which is always non-negative.
Given that \( \cos^{-1} x - \sin^{-1} y = \alpha \), the values of \( x \) and \( y \) are restricted to the interval \([-1, 1]\), ensuring the values lie within the principal range of the inverse trigonometric functions.
Now, let’s rewrite the expression:
\[ x^2 + y^2 + 2xy \sin \alpha = (x + y \sin \alpha)^2. \]
The minimum value of a square term \( (x + y \sin \alpha)^2 \) is 0, which occurs when \( x + y \sin \alpha = 0 \).
Thus, the minimum value of \( x^2 + y^2 + 2xy \sin \alpha \) is 0.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 