We are given the function:
\[
F(x) = |\sin(3x)| - \cos(3x)
\]
and we are asked to find \( f' \left( \frac{\pi}{4} \right) \) for the interval \( \frac{\pi}{6} \leq x \leq \frac{\pi}{3} \).
1. Step 1: Find \( F'(x) \):
To differentiate \( F(x) \), we first differentiate each term separately. The absolute value function requires careful attention, as its derivative is given by:
\[
\frac{d}{dx} |\sin(3x)| = \frac{d}{dx} \sin(3x) \cdot \text{sgn}(\sin(3x))
\]
where \( \text{sgn}(\sin(3x)) \) is the sign function, indicating whether \( \sin(3x) \) is positive or negative.
- Differentiating \( |\sin(3x)| \) gives:
\[
\frac{d}{dx} |\sin(3x)| = 3 \cos(3x) \cdot \text{sgn}(\sin(3x))
\]
- Differentiating \( -\cos(3x) \) gives:
\[
\frac{d}{dx} \left( -\cos(3x) \right) = 3 \sin(3x)
\]
Thus, the derivative of \( F(x) \) is:
\[
F'(x) = 3 \cos(3x) \cdot \text{sgn}(\sin(3x)) + 3 \sin(3x)
\]
2. Step 2: Evaluate \( F'(x) \) at \( x = \frac{\pi}{4} \):
- First, calculate \( \sin(3 \times \frac{\pi}{4}) = \sin\left( \frac{3\pi}{4} \right) = \frac{\sqrt{2}}{2} \), and \( \cos(3 \times \frac{\pi}{4}) = \cos\left( \frac{3\pi}{4} \right) = -\frac{\sqrt{2}}{2} \).
- Therefore, at \( x = \frac{\pi}{4} \):
\[
F'(x) = 3 \left( -\frac{\sqrt{2}}{2} \right) + 3 \left( \frac{\sqrt{2}}{2} \right) = -\frac{3}{2}
\]
Thus, \( f' \left( \frac{\pi}{4} \right) = -\frac{1}{2} \).