Step 1: Check if the electric field is conservative.
For a field to be conservative, its curl must be zero: \[ \nabla \times \mathbf{E} = \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \times \left( x^2 y, y^2 z, z^2 x \right) \] By calculating the curl, we find that: \[ \nabla \times \mathbf{E} = (2xy - 2xz) \hat{i} + (2yz - 2xy) \hat{j} + (2zx - 2yz) \hat{k}. \] Since the curl is non-zero, the field is not conservative.
Step 2: Check if the electric field is static.
A static electric field should not depend on time. Since the given electric field has no time dependence, it is static.
Step 3: Conclusion. Thus, the correct answer is (A) and (B).
While doing Bayesian inference, consider estimating the posterior distribution of the model parameter (m), given data (d). Assume that Prior and Likelihood are proportional to Gaussian functions given by \[ {Prior} \propto \exp(-0.5(m - 1)^2) \] \[ {Likelihood} \propto \exp(-0.5(m - 3)^2) \]
The mean of the posterior distribution is (Answer in integer)
Suppose a mountain at location A is in isostatic equilibrium with a column at location B, which is at sea-level, as shown in the figure. The height of the mountain is 4 km and the thickness of the crust at B is 1 km. Given that the densities of crust and mantle are 2700 kg/m\(^3\) and 3300 kg/m\(^3\), respectively, the thickness of the mountain root (r1) is km. (Answer in integer)
In seismology, Born approximation of the scattered (perturbed) wavefield is given by \[ \delta u(\mathbf{r}, \mathbf{s}; t) \approx \int_V \delta r(\mathbf{x}) \left(u_0(\mathbf{x}, \mathbf{s}; t) _t u_0(\mathbf{r}, \mathbf{x}; t)\right) \, d\mathbf{x}. \] Here, \( _t \) denotes temporal convolution, \( \delta r(\mathbf{x}) \) is the strength of the scatterer at \( \mathbf{x} \) in volume \( V \), \( \delta u(\mathbf{r}, \mathbf{s}; t) \) is the scattered wavefield measured at the receiver \( \mathbf{r} \) from the source \( \mathbf{s} \), \( u_0(\mathbf{x}, \mathbf{s}; t) \) is the downgoing wavefield (to the scatterer at \( \mathbf{x} \) from the source \( \mathbf{s} \)) in the unperturbed medium, \( u_0(\mathbf{r}, \mathbf{x}; t) \) is the upgoing wavefield (to the receiver \( \mathbf{r} \) from the scatterer at \( \mathbf{x} \)) in the unperturbed medium.
Select the correct statement(s).