Step 1: Use Biot–Savart law. The magnetic field at the center of a current-carrying loop is given by: \[ B = \frac{\mu_0 I}{2R} \] So, \( B \propto I \) and \( B \propto \frac{1}{R} \), not \( \frac{1}{R^2} \).
Step 2: Analyze direction.
The direction of the magnetic field is along the axis of the loop, which is perpendicular to its plane (right-hand rule).
Step 3: Evaluate options.
(A) Correct: \( B \propto I \)
(B) Incorrect: Field is inversely proportional to \( R \), not \( R^2 \)
(C) Correct: Field is perpendicular to the loop plane
(D) Incorrect: Field is not in the plane
While doing Bayesian inference, consider estimating the posterior distribution of the model parameter (m), given data (d). Assume that Prior and Likelihood are proportional to Gaussian functions given by \[ {Prior} \propto \exp(-0.5(m - 1)^2) \] \[ {Likelihood} \propto \exp(-0.5(m - 3)^2) \]
The mean of the posterior distribution is (Answer in integer)
Suppose a mountain at location A is in isostatic equilibrium with a column at location B, which is at sea-level, as shown in the figure. The height of the mountain is 4 km and the thickness of the crust at B is 1 km. Given that the densities of crust and mantle are 2700 kg/m\(^3\) and 3300 kg/m\(^3\), respectively, the thickness of the mountain root (r1) is km. (Answer in integer)
In seismology, Born approximation of the scattered (perturbed) wavefield is given by \[ \delta u(\mathbf{r}, \mathbf{s}; t) \approx \int_V \delta r(\mathbf{x}) \left(u_0(\mathbf{x}, \mathbf{s}; t) _t u_0(\mathbf{r}, \mathbf{x}; t)\right) \, d\mathbf{x}. \] Here, \( _t \) denotes temporal convolution, \( \delta r(\mathbf{x}) \) is the strength of the scatterer at \( \mathbf{x} \) in volume \( V \), \( \delta u(\mathbf{r}, \mathbf{s}; t) \) is the scattered wavefield measured at the receiver \( \mathbf{r} \) from the source \( \mathbf{s} \), \( u_0(\mathbf{x}, \mathbf{s}; t) \) is the downgoing wavefield (to the scatterer at \( \mathbf{x} \) from the source \( \mathbf{s} \)) in the unperturbed medium, \( u_0(\mathbf{r}, \mathbf{x}; t) \) is the upgoing wavefield (to the receiver \( \mathbf{r} \) from the scatterer at \( \mathbf{x} \)) in the unperturbed medium.
Select the correct statement(s).