1. Solve the homogeneous equation
\[x^{2}y'' + xy' - 4y = 0\]
Try (y = x^{m}):
\[m(m-1) + m - 4 = 0\]
\[m^{2} - 4 = 0\]
\[m = \pm 2\]
So,
\[y_h = C_{1}x^{2} + C_{2}x^{-2}\]
To keep (y(x)) finite as (x\to 0^{+}), we must set (C_{2} = 0).
Thus,
\[y_h = C_{1}x^{2}\]
2. Find a particular solution
Right-hand side is (x^{2}), which duplicates a homogeneous term ⇒ resonance.
So try:
\[y_p = A x^{2} \ln x\]
Compute derivatives:
\[y_p' = A(2x\ln x + x)\]
\[y_p'' = A(2\ln x + 3)\]
Substitute into the differential equation:
\[x^{2}(A(2\ln x + 3)) + x(A(2x\ln x + x)) - 4(Ax^{2}\ln x)\]
Simplify:
\[2Ax^{2}\ln x + 3Ax^{2} + 2Ax^{2}\ln x + Ax^{2} - 4Ax^{2}\ln x = x^{2}\]
The log terms cancel:
\[4Ax^{2} = x^{2}\]
\[A = \frac14\]
Thus,
\[y_p = \frac14 x^{2}\ln x\]
3. General solution
\[y = C_{1}x^{2} + \frac14 x^{2}\ln x\]
Apply condition (y(1)=1):
\[1 = C_{1}(1)^{2} + \frac14(1)^{2}\ln 1\]
\[C_{1} = 1\]
Final solution:
\[y = x^{2} + \frac14 x^{2}\ln x\]
\[y' = 2x + \frac14(2x\ln x + x)\]
\[y' = 2x + \frac12 x\ln x + \frac14 x\]
\[y' = x\left( \frac94 + \frac12 \ln x \right)\]
Evaluate at (x=1):
\[y'(1) = 1\left( \frac94 + \frac12\ln 1 \right)\]
\[y'(1) = \frac94\]
\[y'(1) = 2.25\]
Final Answer
\[y'(1) = 2.25\]
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.