Given that the value of the integral \[ \int_1^9 (x^2 - 2)\, dx \] calculated using the Simpson's 1/3 rule with four uniform subintervals over the interval [1,9] is given by \[ f(1) + \alpha^2 + \frac{8}{3}, \] then the possible value of \( \alpha \) is _______
Let \( f: \mathbb{R} \to \mathbb{R} \) \(\text{ be any function defined as }\) \[ f(x) = \begin{cases} x^\alpha \sin \left( \frac{1}{x^\beta} \right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases} \] where \( \alpha, \beta \in \mathbb{R} \). Which of the following is true? \( \mathbb{R} \) denotes the set of all real numbers.