Step 1: Matrix inversion property
If \( A^{-1} \) is given, the original matrix \( A \) is the reciprocal of the scalar multiple.
Step 2: Calculate \( A \)
Given \( A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} \), we compute \( A \) by multiplying the inverse by \( 7 \), so:
\[
A = 7 \times A^{-1} = 7 \cdot \frac{1}{7} \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}.
\]
Step 3: Verify the options
The correct matrix is option (B).