Question:

Given $ tan\text{ }A $ and $ tan\text{ B} $ are the roots of $ {{x}^{2}}-ax+b=0 $ . The value of $ {{\sin }^{2}}(A+B) $ is

Updated On: Jun 7, 2024
  • $ \frac{{{a}^{2}}}{{{a}^{2}}+{{(1-b)}^{2}}} $
  • $ \frac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}} $
  • $ \frac{{{a}^{2}}}{{{(a+b)}^{2}}} $
  • $ \frac{{{b}^{2}}}{{{a}^{2}}+{{(1-b)}^{2}}} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given that tan A and tan B are the roots of $ {{x}^{2}}-ax+b=0. $ $ \therefore $ $ tanA+tanB=a\text{ }and\text{ }tanA\text{ }tanB=b $ Now, $ \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}=\frac{a}{1-b} $ Now, $ {{\sin }^{2}}(A+B)=\frac{1}{2}[1-\cos 2(A+B)] $ $=\frac{1}{2}\left[ 1-\frac{1-{{\tan }^{2}}(A+B)}{1+{{\tan }^{2}}(A+B)} \right] $ $=\frac{1}{2}\left[ \frac{1+{{\tan }^{2}}(A+B)-{{\tan }^{2}}(A+B)}{1+{{\tan }^{2}}(A+B)} \right] $ $=\left[ \frac{{{\tan }^{2}}(A+B)}{1+{{\tan }^{2}}(A+B)} \right]=\frac{{{a}^{2}}/{{(1-b)}^{2}}}{\frac{[{{a}^{2}}+{{(1-b)}^{2}}]}{{{(1-b)}^{2}}}} $ $=\frac{{{a}^{2}}}{{{a}^{2}}+{{(1-b)}^{2}}} $
Was this answer helpful?
0
0

Concepts Used:

Quadratic Equations

A polynomial that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b, and c are the real numbers

Consider the following equation ax²+bx+c=0, where a≠0 and a, b, and c are real coefficients.

The solution of a quadratic equation can be found using the formula, x=((-b±√(b²-4ac))/2a)

Two important points to keep in mind are:

  • A polynomial equation has at least one root.
  • A polynomial equation of degree ‘n’ has ‘n’ roots.

Read More: Nature of Roots of Quadratic Equation

There are basically four methods of solving quadratic equations. They are:

  1. Factoring
  2. Completing the square
  3. Using Quadratic Formula
  4. Taking the square root