Step 1: Express \( F(x) \) as an integral
The function \( F(x) \) is obtained by integrating the given derivative:
\[
F(x) = \int \frac{1}{\sqrt{2x - x^2}} \, dx.
\]
Step 2: Simplify the expression inside the square root
Factorize \( 2x - x^2 \):
\[
2x - x^2 = x(2 - x).
\]
Thus:
\[
F(x) = \int \frac{1}{\sqrt{x(2 - x)}} \, dx.
\]
Step 3: Substitute to simplify the integral
Let \( x = 1 - \sin^2 \theta \). Then:
\[
2 - x = 1 + \cos^2 \theta, \quad dx = -2\sin\theta\cos\theta \, d\theta.
\]
Substitute into the integral:
\[
F(x) = \int \frac{1}{\sqrt{1 - \sin^2\theta}(1 + \cos^2\theta)} (-2\sin\theta\cos\theta) \, d\theta.
\]
Simplify and integrate:
\[
F(x) = \sin^{-1}(x - 1) + C.
\]
Step 4: Use the initial condition to find \( C \)
Given \( F(1) = 0 \), substitute \( x = 1 \):
\[
F(1) = \sin^{-1}(1 - 1) + C = 0 \implies C = 0.
\]
Step 5: Conclude the result
\[
F(x) = \sin^{-1}(x - 1).
\]