Davisson-Germer experiment is done and establishes the wave nature of electrons. Interference and diffraction establishes wave nature.
So, the correct option is (A): Both statement I and statement II are true.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
The dual nature of matter and the dual nature of radiation were throughgoing concepts of physics. At the beginning of the 20th century, scientists untangled one of the best-kept secrets of nature – the wave-particle duplexity or the dual nature of matter and radiation.
Electronic Emission
The least energy that is needed to emit an electron from the surface of a metal can be supplied to the loose electrons.
Photoelectric Effect
The photoelectric effect is a phenomenon that involves electrons getting away from the surface of materials.
Heisenberg’s Uncertainty Principle states that both the momentum and position of a particle cannot be determined simultaneously.