Given a discrete random variable X with probability distribution:
| X | -2 | -1 | 0 | 1 | 2 |
|---|---|---|---|---|---|
| P(X) | $ \frac{k^2}{3} $ | $ k^2 $ | $ \frac{2k^2}{3} $ | $ \frac{k}{2} $ | $ \frac{k}{2} $ |
Find the mean (expected value) of X.
If \(S=\{1,2,....,50\}\), two numbers \(\alpha\) and \(\beta\) are selected at random find the probability that product is divisible by 3 :
If the probability distribution is given by:
| X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| P(x) | 0 | k | 2k | 2k | 3k | k² | 2k² | 7k² + k |
Then find: \( P(3 < x \leq 6) \)