Question:

Given a discrete random variable X with probability distribution:

X-2-1012
P(X)$ \frac{k^2}{3} $$ k^2 $$ \frac{2k^2}{3} $$ \frac{k}{2} $$ \frac{k}{2} $

Find the mean (expected value) of X.

Show Hint

Always first use the normalization condition \( \sum P(x_i) = 1 \) to find unknown constants in the distribution.
Updated On: Jun 4, 2025
  • \( \frac{1}{3} \)
  • \( \frac{1}{5} \)
  • \( \frac{11}{2} \)
  • \( \frac{13}{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Use total probability = 1 to find \( k \): \[ \frac{k^2}{3} + k^2 + \frac{2k^2}{3} + \frac{k}{2} + \frac{k}{2} = 1 \Rightarrow 2k^2 + k = 1 \Rightarrow 2k^2 + k - 1 = 0 \Rightarrow k = \frac{1}{2},\quad k^2 = \frac{1}{4} \] Step 2: Compute mean: \[ E(X) = \sum x_i P(x_i) = (-2)\cdot \frac{1}{12} + (-1)\cdot \frac{1}{4} + 0 + 1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} = -\frac{2}{12} - \frac{3}{12} + \frac{3}{12} + \frac{6}{12} = \frac{4}{12} = \frac{1}{3} \]
Was this answer helpful?
0
0