Step 1: Write the system in matrix form:
\[
AX = B, \quad \text{so} \quad X = A^{-1}B
\]
where
\[
A = \begin{bmatrix}
3 & 2 & 1 \\
4 & 1 & 3 \\
1 & 1 & 1
\end{bmatrix}, \quad
B = \begin{bmatrix}
2000 \\
2500 \\
900
\end{bmatrix}
\]
Step 2: Find the determinant of \( A \):
\[
|A| = 3(1 \cdot 1 - 3 \cdot 1) - 2(4 \cdot 1 - 3 \cdot 1) + 1(4 \cdot 1 - 1 \cdot 1) = -5
\]
Step 3: Find the cofactor matrix \( C \) and its transpose:
\[
C = \begin{bmatrix}
-2 & -1 & 3 \\
-1 & 2 & -1 \\
5 & -5 & -5
\end{bmatrix}
\quad \Rightarrow \quad
C^T = \begin{bmatrix}
-2 & -1 & 5 \\
-1 & 2 & -5 \\
3 & -1 & -5
\end{bmatrix}
\]
So,
\[
A^{-1} = \frac{1}{|A|} C^T = -\frac{1}{5}
\begin{bmatrix}
-2 & -1 & 5 \\
-1 & 2 & -5 \\
3 & -1 & -5
\end{bmatrix}
= \frac{1}{5}
\begin{bmatrix}
2 & 1 & -5 \\
1 & -2 & 5 \\
-3 & 1 & 5
\end{bmatrix}
\]
Step 4: Multiply \( A^{-1}B \):
\[
X = A^{-1}B = \frac{1}{5}
\begin{bmatrix}
2 & 1 & -5 \\
1 & -2 & 5 \\
-3 & 1 & 5
\end{bmatrix}
\begin{bmatrix}
2000 \\
2500 \\
900
\end{bmatrix}
\]
Compute each entry:
- \( x = \frac{1}{5} [2(2000) + 1(2500) - 5(900)] = \frac{1}{5}(4000 + 2500 - 4500) = \frac{2000}{5} = 400 \)
- \( y = \frac{1}{5} [1(2000) - 2(2500) + 5(900)] = \frac{1}{5}(2000 - 5000 + 4500) = \frac{1500}{5} = 300 \)
- \( z = \frac{1}{5} [-3(2000) + 1(2500) + 5(900)] = \frac{1}{5}(-6000 + 2500 + 4500) = \frac{1000}{5} = 200 \)
Final Answer:
\[
x = 400, \quad y = 300, \quad z = 200
\]