If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]
Four students of class XII are given a problem to solve independently. Their respective chances of solving the problem are: \[ \frac{1}{2},\quad \frac{1}{3},\quad \frac{2}{3},\quad \frac{1}{5} \] Find the probability that at most one of them will solve the problem.