Given: Track width between front wheels: $t = 1.2$ m Inner wheel steering angle: $\theta_{{in}} = 50^\circ$ Outer wheel steering angle: $\theta_{{out}} = 35^\circ$
Ackermann relation: \[ \tan(\theta_{{in}}) - \tan(\theta_{{out}}) = \frac{t}{L} \cdot \tan(\theta_{{in}}) \cdot \tan(\theta_{{out}}) \]
Substitute: \[ \tan(50^\circ) \approx 1.1918, \quad \tan(35^\circ) \approx 0.7002 \] \[ 1.1918 - 0.7002 = \frac{1.2}{L} \cdot (1.1918 \cdot 0.7002) \Rightarrow 0.4916 = \frac{1.2}{L} \cdot 0.8349 \] \[ L = \frac{1.2 \cdot 0.8349}{0.4916} = \frac{1.00188}{0.4916} \approx \boxed{2.04\ {m}} \]