From the following data, the modal class of the table will be:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency (f)} & 11 & 21 & 23 & 14 & 5 \\ \hline \end{array} \]
The modal class is the class interval with the highest frequency.
The given frequency distribution is as follows:
\[ \begin{array}{|c|c|} \hline \text{Class Interval} & \text{Frequency (f)} \\ \hline 0-10 & 11 \\ 10-20 & 21 \\ 20-30 & 23 \\ 30-40 & 14 \\ 40-50 & 5 \\ \hline \end{array} \]
The highest frequency is \( 23 \), which corresponds to the class interval \( 20-30 \).
Therefore, the modal class of the given data is \( 20-30 \).
The coefficient of correlation of the above two data series will be equal to \(\underline{\hspace{1cm}}\)
\[\begin{array}{|c|c|} \hline X & Y \\ \hline -3 & 9 \\ -2 & 4 \\ -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ \hline \end{array}\]
Identify the median class for the following grouped data:
\[\begin{array}{|c|c|} \hline \textbf{Class interval} & \textbf{Frequency} \\ \hline 5-10 & 5 \\ 10-15 & 15 \\ 15-20 & 22 \\ 20-25 & 25 \\ 25-30 & 10 \\ 30-35 & 3 \\ \hline \end{array}\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.