Let the expression be E.
\[ E = \frac{\sin x}{1+\cos x} + \frac{1+\cos x}{\sin x} \]
Combine the fractions with a common denominator \((1+\cos x)\sin x\):
\[ E = \frac{\sin x \cdot \sin x + (1+\cos x)(1+\cos x)}{(1+\cos x)\sin x} \]
\[ E = \frac{\sin^2 x + (1+\cos x)^2}{(1+\cos x)\sin x} \]
Expand the numerator:
\((1+\cos x)^2 = 1^2 + 2(1)(\cos x) + \cos^2 x = 1 + 2\cos x + \cos^2 x\).
So, the numerator is \(\sin^2 x + 1 + 2\cos x + \cos^2 x\).
Using the identity \(\sin^2 x + \cos^2 x = 1\):
Numerator = \((\sin^2 x + \cos^2 x) + 1 + 2\cos x = 1 + 1 + 2\cos x = 2 + 2\cos x\).
Factor out 2 from the numerator: Numerator = \(2(1+\cos x)\).
Now substitute back into E:
\[ E = \frac{2(1+\cos x)}{(1+\cos x)\sin x} \]
Assuming \(1+\cos x \neq 0\) (i.e., \(\cos x \neq -1\), so \(x \neq (2k+1)\pi\)) and \(\sin x \neq 0\) (i.e., \(x \neq k\pi\)), we can cancel the term \((1+\cos x)\):
\[ E = \frac{2}{\sin x} \]
Since \(\csc x = \frac{1}{\sin x}\),
\[ E = 2 \csc x \]
This matches option (b).
\[ \boxed{2 \csc x} \]