Question:

$\frac{d}{dx} \left[ \cos^2 \left( \cot^{-1} \sqrt{\frac{2 + x}{2 - x}} \right) \right]$ is:}

Updated On: Mar 29, 2025
  • $\frac{3}{4}$
  • $\frac{1}{2}$
  • $1$
  • $\frac{1}{4}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Approach Solution - 1

1. Understand the problem:

We need to differentiate the expression \( \cos^2 \left( \cot^{-1} \sqrt{\frac{2+x}{2-x}} \right) \) with respect to \( x \).

2. Simplify the expression:

Let \( \theta = \cot^{-1} \sqrt{\frac{2+x}{2-x}} \). Then, \( \cot \theta = \sqrt{\frac{2+x}{2-x}} \).

Construct a right triangle with adjacent side \( \sqrt{2+x} \) and opposite side \( \sqrt{2-x} \). The hypotenuse is:

\[ \sqrt{(\sqrt{2+x})^2 + (\sqrt{2-x})^2} = \sqrt{2+x + 2-x} = \sqrt{4} = 2 \]

Thus, \( \cos \theta = \frac{\sqrt{2+x}}{2} \), and:

\[ \cos^2 \theta = \left( \frac{\sqrt{2+x}}{2} \right)^2 = \frac{2+x}{4} \]

3. Differentiate with respect to \( x \):

Now, the expression simplifies to \( \frac{2+x}{4} \). Differentiate:

\[ \frac{d}{dx} \left( \frac{2+x}{4} \right) = \frac{1}{4} \]

Correct Answer: (D) \( \frac{1}{4} \)

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Let $y = \cos^2 \left( \cot^{-1} \sqrt{\frac{2 + x}{2 - x}} \right)$. Using the chain rule: \[ \frac{dy}{dx} = 2 \cos \left( \cot^{-1} u \right) \cdot (-\sin \left( \cot^{-1} u \right)) \cdot \frac{du}{dx}, \] where $u = \sqrt{\frac{2 + x}{2 - x}}$. Simplify $\cos^2(\cot^{-1} u)$ to get: \[ \frac{dy}{dx} = \frac{1}{4}. \]

Was this answer helpful?
0
0