1. Understand the problem:
We need to differentiate the expression \( \cos^2 \left( \cot^{-1} \sqrt{\frac{2+x}{2-x}} \right) \) with respect to \( x \).
2. Simplify the expression:
Let \( \theta = \cot^{-1} \sqrt{\frac{2+x}{2-x}} \). Then, \( \cot \theta = \sqrt{\frac{2+x}{2-x}} \).
Construct a right triangle with adjacent side \( \sqrt{2+x} \) and opposite side \( \sqrt{2-x} \). The hypotenuse is:
\[ \sqrt{(\sqrt{2+x})^2 + (\sqrt{2-x})^2} = \sqrt{2+x + 2-x} = \sqrt{4} = 2 \]
Thus, \( \cos \theta = \frac{\sqrt{2+x}}{2} \), and:
\[ \cos^2 \theta = \left( \frac{\sqrt{2+x}}{2} \right)^2 = \frac{2+x}{4} \]
3. Differentiate with respect to \( x \):
Now, the expression simplifies to \( \frac{2+x}{4} \). Differentiate:
\[ \frac{d}{dx} \left( \frac{2+x}{4} \right) = \frac{1}{4} \]
Correct Answer: (D) \( \frac{1}{4} \)
Let $y = \cos^2 \left( \cot^{-1} \sqrt{\frac{2 + x}{2 - x}} \right)$. Using the chain rule: \[ \frac{dy}{dx} = 2 \cos \left( \cot^{-1} u \right) \cdot (-\sin \left( \cot^{-1} u \right)) \cdot \frac{du}{dx}, \] where $u = \sqrt{\frac{2 + x}{2 - x}}$. Simplify $\cos^2(\cot^{-1} u)$ to get: \[ \frac{dy}{dx} = \frac{1}{4}. \]
For the beam and loading shown in the figure, the second derivative of the deflection curve of the beam at the mid-point of AC is given by \( \frac{\alpha M_0}{8EI} \). The value of \( \alpha \) is ........ (rounded off to the nearest integer).
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?