1. Understand the problem:
We need to differentiate the expression \( \cos^2 \left( \cot^{-1} \sqrt{\frac{2+x}{2-x}} \right) \) with respect to \( x \).
2. Simplify the expression:
Let \( \theta = \cot^{-1} \sqrt{\frac{2+x}{2-x}} \). Then, \( \cot \theta = \sqrt{\frac{2+x}{2-x}} \).
Construct a right triangle with adjacent side \( \sqrt{2+x} \) and opposite side \( \sqrt{2-x} \). The hypotenuse is:
\[ \sqrt{(\sqrt{2+x})^2 + (\sqrt{2-x})^2} = \sqrt{2+x + 2-x} = \sqrt{4} = 2 \]
Thus, \( \cos \theta = \frac{\sqrt{2+x}}{2} \), and:
\[ \cos^2 \theta = \left( \frac{\sqrt{2+x}}{2} \right)^2 = \frac{2+x}{4} \]
3. Differentiate with respect to \( x \):
Now, the expression simplifies to \( \frac{2+x}{4} \). Differentiate:
\[ \frac{d}{dx} \left( \frac{2+x}{4} \right) = \frac{1}{4} \]
Correct Answer: (D) \( \frac{1}{4} \)
1. Let's simplify the expression first
Let $ \theta = \cot^{-1}\left(\frac{\sqrt{2+x}}{\sqrt{2-x}}\right) $.
Then, $ \cot(\theta) = \frac{\sqrt{2+x}}{\sqrt{2-x}} $.
Consider a right-angled triangle where the adjacent side is $ \sqrt{2+x} $ and the opposite side is $ \sqrt{2-x} $.
Then the hypotenuse is:
\[ \sqrt{\left(\sqrt{2+x}\right)^2 + \left(\sqrt{2-x}\right)^2} = \sqrt{(2+x) + (2-x)} = \sqrt{4} = 2 \]
Therefore, $ \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{\sqrt{2+x}}{2} $.
So, $ \cos^2\left(\cot^{-1}\left(\frac{\sqrt{2+x}}{\sqrt{2-x}}\right)\right) = \cos^2(\theta) = \left(\frac{\sqrt{2+x}}{2}\right)^2 = \frac{2+x}{4} $.
2. Now differentiate:
\[ \frac{d}{dx} \left[\cos^2\left(\cot^{-1}\left(\frac{\sqrt{2+x}}{\sqrt{2-x}}\right)\right)\right] = \frac{d}{dx} \left[\frac{2+x}{4}\right] = \frac{1}{4} \]
Therefore, the derivative is $ \frac{1}{4} $.