\(f(x)\) has minimum at \(x=0\)
And \(f(x)_{min}=f(0)\)
\(f(x)_{min}=0\)
So, the answer is \(0\).
To find the minimum value of the function f(x), let's start by analysing the integrand \(\frac{e^{(t-\cos(t))}}{1+t^{2023}}\).
1. \(e^{(t-\cos(t))}\) is always positive for all t in R.
2. \(1 + t^{2023}\) is also always positive.
So, \(\frac{e^{(t-\cos(t))}}{1+t^{2023}}\) is non-negative for all t in R.
Now, we want to find the minimum value of f(x), which occurs when the integrand is at its minimum value. Since the integrand is non-negative, the minimum value of the integral occurs when the integrand is at its minimum value, which is 0.
The minimum value of f(x) is achieved when x is the smallest possible value, which is when x = 0.
Thus, the minimum value of f(x) is 0, attained at x = 0.
So, the answer is 0.
Let f : (0,1) → R be the function defined as f(x) = √n if x ∈ [\(\frac{1}{n+1},\frac{1}{n}\)] where n ∈ N. Let g : (0,1) → R be a function such that \(\int_{x^2}^{x}\sqrt{\frac{1-t}{t}}dt<g(x)<2\sqrt x\) for all x ∈ (0,1).
Then \(\lim_{x\rightarrow0}f(x)g(x)\)
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C