Question:

For \(x\in[-1,1]\), evaluate \(\ \sin\!\big(2(\sin^{-1}x+\cos^{-1}x)\big)\).

Show Hint

Key identity: $\sin^{-1}x+\cos^{-1}x=\dfrac{\pi}{2}$ for all $x\in[-1,1]$.
  • \(0\)
  • \(1\)
  • \(-1\)
  • \(1/2\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

\(\sin^{-1}x+\cos^{-1}x=\dfrac{\pi}{2}\). Hence \[ 2(\sin^{-1}x+\cos^{-1}x)=2\cdot \frac{\pi}{2}=\pi, \sin(\pi)=0. \]
Was this answer helpful?
0
0