Question:

For \(x\in\mathbb{R}\), compute \(\csc\!\big(\tan^{-1}x+\cot^{-1}x\big)\).

Show Hint

Remember $\arctan x+\operatorname{arccot}x=\dfrac{\pi}{2}$ (principal values).
  • \(0\)
  • \(1\)
  • \(\dfrac{2}{\sqrt3}\)
  • \(2\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

With the standard principal ranges used in school exams, \(\tan^{-1}x+\cot^{-1}x=\dfrac{\pi}{2}\). Therefore \[ \csc\!\left(\tan^{-1}x+\cot^{-1}x\right)=\csc\!\left(\frac{\pi}{2}\right)=1. \]
Was this answer helpful?
0
0