Let \(y = \log x\), since \(x>1\Rightarrow y>0\)
\[
\log_2\left(\frac{2}{x}\right)\log^2 x + \log^2 x = 1 \Rightarrow \left(1 - \log_2 x\right) y^2 + y^2 = 1
\Rightarrow (2 - \log_2 x)\cdot y^2 = 1
\]
Now, since \(y = \log x = \frac{\log_2 x}{\log_2 10}\), try values numerically. Only one solution found numerically satisfying all constraints.