For \( x<0 \), \( \frac{d}{dx} [|x|^x] \) is given by:
Step 1: Simplify the expression for \( x < 0 \)
For \( x < 0 \), we know that: \[ |x| = -x \Rightarrow |x|^x = (-x)^x \]
Step 2: Take logarithm to simplify
Let \( y = (-x)^x \)
Take natural logarithm on both sides: \[ \ln y = x \ln(-x) \]
Step 3: Differentiate using chain rule
Differentiate both sides with respect to \( x \): \[ \frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} \left( x \ln(-x) \right) \] Use product rule: \[ \frac{d}{dx} \left( x \ln(-x) \right) = \ln(-x) + x \cdot \frac{d}{dx} [\ln(-x)] \] Note: \[ \frac{d}{dx} [\ln(-x)] = \frac{-1}{x} \Rightarrow x \cdot \left( \frac{-1}{x} \right) = -1 \] So: \[ \frac{dy}{dx} \cdot \frac{1}{y} = \ln(-x) - 1 \Rightarrow \frac{dy}{dx} = y [\ln(-x) - 1] \] Recall \( y = (-x)^x \), so: \[ \frac{d}{dx} [|x|^x] = (-x)^x [\ln(-x) - 1] = (-x)^x [1 + \log(-x)] \] since \( \ln a = \log_e a \) and \( \log(-x) \) in base \( e \).
\( \boxed{ (-x)^x [1 + \log(-x)] } \)