Step 1: Expressing \( |x|^x \) in a Differentiable Form
For \( x<0 \), we rewrite the given function using \( -x \):
\[
|x|^x = (-x)^x.
\]
Taking the natural logarithm on both sides:
\[
\ln y = x \ln(-x).
\]
Step 2: Differentiating Both Sides
Differentiating both sides with respect to \( x \):
\[
\frac{1}{y} \frac{dy}{dx} = \ln(-x) + x \cdot \frac{1}{-x} \cdot (-1).
\]
Simplifying:
\[
\frac{1}{y} \frac{dy}{dx} = \ln(-x) + 1.
\]
Step 3: Substituting \( y = (-x)^x \)
\[
\frac{dy}{dx} = (-x)^x [1 + \log(-x)].
\]
Final Answer: \( \boxed{(-x)^x [1 + \log(-x)]} \).