The matrix \( A \) has no inverse if its determinant is zero. To find the determinant of \( A \), we calculate:
\[
\text{det}(A) = \begin{vmatrix} 8 & x & 0 4 & 0 & 2 12 & 6 & 0 \end{vmatrix}
\]
Using cofactor expansion along the first row:
\[
\text{det}(A) = 8 \begin{vmatrix} 0 & 2 6 & 0 \end{vmatrix} - x \begin{vmatrix} 4 & 2 \\ 12 & 0 \end{vmatrix} + 0
\]
Now, calculate the 2x2 determinants:
\[
\begin{vmatrix} 0 & 2 6 & 0 \end{vmatrix} = -12
\]
\[
\begin{vmatrix} 4 & 2 12 & 0 \end{vmatrix} = -24
\]
Thus, we get:
\[
\text{det}(A) = 8 \cdot (-12) - x \cdot (-24) = -96 + 24x
\]
For the matrix to have no inverse, we set the determinant equal to zero:
\[
-96 + 24x = 0
\]
Solving for \( x \):
\[
24x = 96
\]
\[
x = 4
\]
Therefore, the correct answer is 2. 4.