Step 1: Verify the exactness condition.
The equation is exact if the mixed partial derivatives of the components of the equation are equal, i.e.,
\[
\frac{\partial}{\partial y}\left( M(x, y) \right) = \frac{\partial}{\partial x}\left( N(x, y) \right)
\]
where \( M(x, y) = e^x \sin y - 2y \sin x \) and \( N(x, y) \) is one of the provided options.
Step 2: Compute the partial derivatives for each choice of \( N(x, y) \).
For \( M(x, y) = e^x \sin y - 2y \sin x \),
\[
\frac{\partial M}{\partial y} = e^x \cos y - 2 \sin x
\]
Now, compute \( \frac{\partial N}{\partial x} \) for each \( N(x, y) \):
1. For option (A): \( N(x, y) = e^x \sin y + 2 \cos x \),
\[
\frac{\partial N}{\partial x} = e^x \sin y - 2 \sin x
\]
2. For option (B): \( N(x, y) = e^x \cos y + 2 \cos x \),
\[
\frac{\partial N}{\partial x} = e^x \cos y - 2 \sin x
\]
3. For option (C): \( N(x, y) = e^x \cos y + 2 \sin x \),
\[
\frac{\partial N}{\partial x} = e^x \cos y + 2 \cos x
\]
4. For option (D): \( N(x, y) = e^x \sin y + 2 \sin x \),
\[
\frac{\partial N}{\partial x} = e^x \sin y + 2 \cos x
\]
Step 3: Check exactness.
We see that for option (B),
\[
\frac{\partial M}{\partial y} = e^x \cos y - 2 \sin x \quad \text{and} \quad \frac{\partial N}{\partial x} = e^x \cos y - 2 \sin x
\]
match, confirming that option (B) satisfies the exactness condition.
Final Answer:
\[
\boxed{N(x, y) = e^x \cos y + 2 \cos x}
\]