Step 1: Condition for Perpendicular Lines.
For the general second-degree equation of the form:
\[
Ax^2 + 2Bxy + Cy^2 = 0,
\]
the condition for the lines to be perpendicular is:
\[
B^2 - AC = 0.
\]
In our case, the equation is:
\[
6x^2 - xy + \lambda y^2 = 0,
\]
which means:
\( A = 6 \),
\( B = -\frac{1}{2} \),
\( C = \lambda \).
Substitute these into the condition \( B^2 - AC = 0 \):
\[
\left( -\frac{1}{2} \right)^2 - 6 \cdot \lambda = 0 \quad \Rightarrow \quad \frac{1}{4} - 6\lambda = 0 \quad \Rightarrow \quad \lambda = \frac{1}{24}.
\]
Step 2: Condition for Lines Inclined at an Angle of 45°.
Using the formula for the angle between two lines:
\[
\tan \theta = \frac{2\sqrt{B^2 - AC}}{A + C},
\]
for \( \theta = 45^\circ \), we have:
\[
1 = \frac{2\sqrt{B^2 - AC}}{A + C},
\]
leading to:
\[
(A + C)^2 = 4(B^2 - AC).
\]
Substitute \( A = 6 \), \( B = -\frac{1}{2} \), and \( C = \lambda \):
\[
(6 + \lambda)^2 = 4\left( \frac{1}{4} - 6\lambda \right),
\]
\[
(6 + \lambda)^2 = 4\left( \frac{1}{4} - 6\lambda \right) \quad \Rightarrow \quad 36 + 12\lambda + \lambda^2 = 1 - 24\lambda,
\]
\[
\lambda^2 + 36\lambda + 35 = 0.
\]
Solving for \( \lambda \):
\[
\lambda = \frac{-36 \pm \sqrt{1296 - 140}}{2} = \frac{-36 \pm \sqrt{1156}}{2} = \frac{-36 \pm 34}{2}.
\]
Thus, we have two possible solutions:
\[
\lambda = -1 \quad {or} \quad \lambda = -35.
\]
Step 3: Conclusion.
Thus, the correct values of \( \lambda \) are \( -6 \) and \( -35 \).