Compound Interest for 2 years at 5%: \[ \text{CI} = P \left(1 + \frac{5}{100}\right)^2 - P = P \left(1.1025 - 1\right) = P \cdot 0.1025 \]
Simple Interest for 2 years at 5%: \[ \text{SI} = \frac{P \cdot 5 \cdot 2}{100} = P \cdot 0.10 \]
\[ \text{CI} - \text{SI} = 1125 \Rightarrow P(0.1025 - 0.09) = 1125 \Rightarrow P \cdot 0.0125 = 1125 \Rightarrow P = \frac{1125}{0.0125} = \boxed{90000} \]
✅ The Principal is: \[ \boxed{\text{₹ 90,000}} \]
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: