Step 1: Understanding the given data
The given reaction is:
\( X(s) \rightleftharpoons Y(s) + Z(g) \)
The plot shows \( \ln \left( \frac{p_z}{p^\circ} \right) \) versus \( \frac{10^4}{T} \), where:
- \( p_z \) is the pressure (in bar) of the gas Z at temperature \( T \),
- \( p^\circ = 1 \, \text{bar} \) (standard pressure),
- \( T \) is the temperature in Kelvin.
We are tasked with calculating the value of \( \Delta S^{0} \) at \( T = 1000 \, \text{K} \).
The relationship between the equilibrium constant \( K \) and temperature is given by:
\[ \frac{d (\ln K)}{d \left( \frac{1}{T} \right)} = -\frac{\Delta H^{0}}{R} \] - \( K = \frac{p_z}{p^\circ} \) is the equilibrium constant,
- \( \Delta H^{0} \) is the standard enthalpy change of the reaction,
Additionally, the equation for \( \Delta G^{0} \) (standard Gibbs free energy change) is:
\[ \Delta G^{0} = -RT \ln K \] And since \( \Delta G^{0} = \Delta H^{0} - T \Delta S^{0} \), we can relate \( \Delta S^{0} \) to the change in \( \Delta G^{0} \).
Step 2: Extracting information from the graph
From the graph, we can determine the slope. The change in \( \ln \left( \frac{p_z}{p^\circ} \right) \) is:
\[ \Delta \left( \ln \left( \frac{p_z}{p^\circ} \right) \right) = -3 - (-7) = 4 \] The change in \( \frac{10^4}{T} \) is:
\[ \Delta \left( \frac{10^4}{T} \right) = 12 - 10 = 2 \] So, the slope of the line is:
\[ m = \frac{4}{2} = 2 \] Step 3: Applying the slope to the formula
Now, we can use the relationship between the slope and \( \Delta H^{0} \):
\[ \text{Slope} = -\frac{\Delta H^{0}}{R} \] Substituting the slope and the value of \( R \) (8314 J/molΒ·K):
\[ 2 = -\frac{\Delta H^{0}}{8314} \] Solving for \( \Delta H^{0} \):
\[ \Delta H^{0} = -2 \times 8314 = -16628 \, \text{J/mol} \] Step 4: Calculating \( \Delta G^{0} \) at \( T = 1000 \, \text{K} \)
Using the equation for \( \Delta G^{0} \):
\[ \Delta G^{0} = -RT \ln K \] At \( T = 1000 \, \text{K} \), from the graph:
\[ \ln \left( \frac{p_z}{p^\circ} \right) = -3 \] Thus:
\[ \Delta G^{0} = -8314 \times 1000 \times (-3) = 24942000 \, \text{J/mol} = 24942 \, \text{kJ/mol} \] Step 5: Using the Gibbs Free Energy equation
Using the equation \( \Delta G^{0} = \Delta H^{0} - T \Delta S^{0} \), substitute known values:
\[ 24942 = -16628 - 1000 \times \Delta S^{0} \]
Step 6: Conclusion
The value of $\Delta S^{0}$ (in $J\, K ^{-1} mol ^{-1}$ ) for the given reaction, at $1000\, K$ is 141.34
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.