
Step 1: Understanding the given data
The given reaction is:
\( X(s) \rightleftharpoons Y(s) + Z(g) \)
The plot shows \( \ln \left( \frac{p_z}{p^\circ} \right) \) versus \( \frac{10^4}{T} \), where:
- \( p_z \) is the pressure (in bar) of the gas Z at temperature \( T \),
- \( p^\circ = 1 \, \text{bar} \) (standard pressure),
- \( T \) is the temperature in Kelvin.
We are tasked with calculating the value of \( \Delta S^{0} \) at \( T = 1000 \, \text{K} \).
The relationship between the equilibrium constant \( K \) and temperature is given by:
\[ \frac{d (\ln K)}{d \left( \frac{1}{T} \right)} = -\frac{\Delta H^{0}}{R} \] - \( K = \frac{p_z}{p^\circ} \) is the equilibrium constant,
- \( \Delta H^{0} \) is the standard enthalpy change of the reaction,
Additionally, the equation for \( \Delta G^{0} \) (standard Gibbs free energy change) is:
\[ \Delta G^{0} = -RT \ln K \] And since \( \Delta G^{0} = \Delta H^{0} - T \Delta S^{0} \), we can relate \( \Delta S^{0} \) to the change in \( \Delta G^{0} \).
Step 2: Extracting information from the graph
From the graph, we can determine the slope. The change in \( \ln \left( \frac{p_z}{p^\circ} \right) \) is:
\[ \Delta \left( \ln \left( \frac{p_z}{p^\circ} \right) \right) = -3 - (-7) = 4 \] The change in \( \frac{10^4}{T} \) is:
\[ \Delta \left( \frac{10^4}{T} \right) = 12 - 10 = 2 \] So, the slope of the line is:
\[ m = \frac{4}{2} = 2 \] Step 3: Applying the slope to the formula
Now, we can use the relationship between the slope and \( \Delta H^{0} \):
\[ \text{Slope} = -\frac{\Delta H^{0}}{R} \] Substituting the slope and the value of \( R \) (8314 J/molΒ·K):
\[ 2 = -\frac{\Delta H^{0}}{8314} \] Solving for \( \Delta H^{0} \):
\[ \Delta H^{0} = -2 \times 8314 = -16628 \, \text{J/mol} \] Step 4: Calculating \( \Delta G^{0} \) at \( T = 1000 \, \text{K} \)
Using the equation for \( \Delta G^{0} \):
\[ \Delta G^{0} = -RT \ln K \] At \( T = 1000 \, \text{K} \), from the graph:
\[ \ln \left( \frac{p_z}{p^\circ} \right) = -3 \] Thus:
\[ \Delta G^{0} = -8314 \times 1000 \times (-3) = 24942000 \, \text{J/mol} = 24942 \, \text{kJ/mol} \] Step 5: Using the Gibbs Free Energy equation
Using the equation \( \Delta G^{0} = \Delta H^{0} - T \Delta S^{0} \), substitute known values:
\[ 24942 = -16628 - 1000 \times \Delta S^{0} \]
Step 6: Conclusion
The value of $\Delta S^{0}$ (in $J\, K ^{-1} mol ^{-1}$ ) for the given reaction, at $1000\, K$ is 141.34
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?