The rate of production of \( \text{NO}_2 \) can be determined from the rate of change of \( \text{N}_2\text{O}_5 \). The balanced equation shows that for every 2 moles of \( \text{N}_2\text{O}_5 \) consumed, 4 moles of \( \text{NO}_2 \) are produced. Therefore, the rate of production of \( \text{NO}_2 \) is:
\[
\frac{d[\text{NO}_2]}{dt} = \frac{4}{2} \times \frac{d[\text{N}_2\text{O}_5]}{dt}
\]
Using the concentration change of \( \text{N}_2\text{O}_5 \):
\[
\Delta [\text{N}_2\text{O}_5] = 2.0 - 1.4 = 0.6 \, \text{mol L}^{-1}
\]
Since the reaction occurs over 300 minutes, the rate of change of \( \text{N}_2\text{O}_5 \) is:
\[
\frac{d[\text{N}_2\text{O}_5]}{dt} = \frac{0.6}{300} = 2 \times 10^{-3} \, \text{mol L}^{-1} \text{min}^{-1}
\]
Thus, the rate of production of \( \text{NO}_2 \) is:
\[
\frac{d[\text{NO}_2]}{dt} = 4 \times 10^{-3} \, \text{mol L}^{-1} \text{min}^{-1}
\]