Concept:
Energy of a single photon is given by:
\[
E = \frac{hc}{\lambda}
\]
Power of the source represents energy emitted per second:
\[
P = \frac{\text{Total energy emitted per second}}{\text{time}}
\]
Hence, number of photons emitted per second:
\[
n = \frac{P}{E}
\]
Step 1: Convert Given Quantities into SI Units
\[
P = 6\,\text{mW} = 6 \times 10^{-3}\,\text{W}
\]
\[
\lambda = 663\,\text{nm} = 6.63 \times 10^{-7}\,\text{m}
\]
Step 2: Calculate Energy of One Photon
\[
E = \frac{hc}{\lambda}
= \frac{(6.63 \times 10^{-34})(3 \times 10^{8})}{6.63 \times 10^{-7}}
\]
\[
E = 3 \times 10^{-19}\,\text{J}
\]
Step 3: Calculate Number of Photons Emitted per Second
\[
n = \frac{6 \times 10^{-3}}{3 \times 10^{-19}}
= 2 \times 10^{16}
\]
Step 4: Express in Required Form
\[
2 \times 10^{16} = 20 \times 10^{15}
\]
\[
\boxed{N = 20}
\]