Concept:
The de-Broglie wavelength of a particle is given by:
\[
\lambda = \frac{h}{p}
\]
For gas molecules at temperature $T$, the rms momentum is:
\[
p = \sqrt{3mkT}
\]
Hence,
\[
\lambda = \frac{h}{\sqrt{3mkT}}
\]
Step 1: Convert given quantities
Temperature:
\[
T = 27^\circ\text{C} = 300\ \text{K}
\]
Mass of one oxygen molecule:
\[
m = \frac{32\times10^{-3}}{6.02\times10^{23}}
\approx 5.31\times10^{-26}\ \text{kg}
\]
Step 2: Substitute values
\[
\lambda = \frac{6.63\times10^{-34}}
{\sqrt{3\times 5.31\times10^{-26}\times 1.38\times10^{-23}\times 300}}
\]
Step 3: Calculate
\[
\lambda \approx 2.57\times10^{-11}\ \text{m}
\]
Step 4: Convert to angstrom
\[
1\ \text{\AA} = 10^{-10}\ \text{m}
\]
\[
\lambda = 0.257\ \text{\AA}
\]
Step 5:
Hence, the de-Broglie wavelength of the oxygen molecule is:
\[
\boxed{0.257\ \text{\AA}}
\]