Concept:
For hydrogen-like species, the energy of the electron in the \(n^{\text{th}}\) orbit is:
\[
E_n = -13.6\,\frac{Z^2}{n^2}\ \text{eV}
\]
Energy released or absorbed during a transition:
\[
\Delta E = 13.6\,Z^2\left(\frac{1}{n_f^2}-\frac{1}{n_i^2}\right)
\]
Step 1: Check each option.
Option (A): Hydrogen ground state
\[
E_1 = -13.6\ \text{eV}
\]
Given value is \(-6.8\ \text{eV}\) ❌ (incorrect)
Option (B): \( \mathrm{Li^{2+}} \) ground state (\(Z=3\))
\[
E_1 = -13.6 \times 3^2 = -122.4\ \text{eV}
\]
Given value is \(-13.6\ \text{eV}\) ❌
Option (C): \( \mathrm{He^+} \), transition \(2 \to 1\) (\(Z=2\))
\[
\Delta E = 13.6 \times 2^2\left(1 - \frac{1}{4}\right)
\]
\[
= 13.6 \times 4 \times \frac{3}{4}
= 40.8\ \text{eV}
\]
✔️ Correct
Option (D): \( \mathrm{Be^{3+}} \), transition \(2 \to 1\) (\(Z=4\))
\[
\Delta E = 13.6 \times 16 \times \frac{3}{4} = 163.2\ \text{eV}
\]
Also energy released should be negative, not positive ❌
Conclusion:
Only option (3) matches the correct calculated value.