At the central position, the path difference is given by:
\[ \Delta x = (\mu - 1)t_1 - (\mu - 1)t_2 \]
Factoring \((\mu - 1)\), we get:
\[ \Delta x = (\mu - 1)(t_1 - t_2) \]
Substitute the given values:
\[ \Delta x = \left(\frac{3}{2} - 1\right)(5.11 - 5.10) \ \text{mm} \]
\[ \Delta x = \frac{1}{2} \times 0.001 \ \text{mm} \]
\[ \Delta x = 0.0005 \ \text{mm} = 5 \times 10^{-6} \ \text{m} \]
The number of fringes shifted is given by:
\[ \text{No. of fringes shifted} = \frac{\Delta x}{\lambda} \]
Substitute the values \(\Delta x = 5 \times 10^{-6} \ \text{m}\) and \(\lambda = 5 \times 10^{-7} \ \text{m}\):
\[ \text{No. of fringes shifted} = \frac{5 \times 10^{-6}}{5 \times 10^{-7}} \]
\[ \text{No. of fringes shifted} = 10 \]
(A) : 10
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).