At the central position, the path difference is given by:
\[ \Delta x = (\mu - 1)t_1 - (\mu - 1)t_2 \]
Factoring \((\mu - 1)\), we get:
\[ \Delta x = (\mu - 1)(t_1 - t_2) \]
Substitute the given values:
\[ \Delta x = \left(\frac{3}{2} - 1\right)(5.11 - 5.10) \ \text{mm} \]
\[ \Delta x = \frac{1}{2} \times 0.001 \ \text{mm} \]
\[ \Delta x = 0.0005 \ \text{mm} = 5 \times 10^{-6} \ \text{m} \]
The number of fringes shifted is given by:
\[ \text{No. of fringes shifted} = \frac{\Delta x}{\lambda} \]
Substitute the values \(\Delta x = 5 \times 10^{-6} \ \text{m}\) and \(\lambda = 5 \times 10^{-7} \ \text{m}\):
\[ \text{No. of fringes shifted} = \frac{5 \times 10^{-6}}{5 \times 10^{-7}} \]
\[ \text{No. of fringes shifted} = 10 \]
(A) : 10
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: