At the central position, the path difference is given by:
\[ \Delta x = (\mu - 1)t_1 - (\mu - 1)t_2 \]
Factoring \((\mu - 1)\), we get:
\[ \Delta x = (\mu - 1)(t_1 - t_2) \]
Substitute the given values:
\[ \Delta x = \left(\frac{3}{2} - 1\right)(5.11 - 5.10) \ \text{mm} \]
\[ \Delta x = \frac{1}{2} \times 0.001 \ \text{mm} \]
\[ \Delta x = 0.0005 \ \text{mm} = 5 \times 10^{-6} \ \text{m} \]
The number of fringes shifted is given by:
\[ \text{No. of fringes shifted} = \frac{\Delta x}{\lambda} \]
Substitute the values \(\Delta x = 5 \times 10^{-6} \ \text{m}\) and \(\lambda = 5 \times 10^{-7} \ \text{m}\):
\[ \text{No. of fringes shifted} = \frac{5 \times 10^{-6}}{5 \times 10^{-7}} \]
\[ \text{No. of fringes shifted} = 10 \]
(A) : 10
For a given reaction \( R \rightarrow P \), \( t_{1/2} \) is related to \([A_0]\) as given in the table. Given: \( \log 2 = 0.30 \). Which of the following is true?
| \([A]\) (mol/L) | \(t_{1/2}\) (min) |
|---|---|
| 0.100 | 200 |
| 0.025 | 100 |
A. The order of the reaction is \( \frac{1}{2} \).
B. If \( [A_0] \) is 1 M, then \( t_{1/2} \) is \( 200/\sqrt{10} \) min.
C. The order of the reaction changes to 1 if the concentration of reactant changes from 0.100 M to 0.500 M.
D. \( t_{1/2} \) is 800 min for \( [A_0] = 1.6 \) M.