The least count (LC) of a travelling microscope is given by: \[ \text{LC} = \frac{\text{Value of one main scale division}}{\text{Number of divisions on the Vernier scale}} = \frac{1 \, \text{msd}}{25} \] Given:
- 1 msd = \( \frac{15 \, \text{cm}}{300} = 0.05 \, \text{cm} \),
- Vernier scale has 25 divisions, and each division is equal to 24 divisions of the main scale.
Thus, the least count is: \[ \text{LC} = \frac{0.05 \, \text{cm}}{25} = 0.002 \, \text{cm} \]
Thus, the correct answer is (2).
Match List-I with List-II for the index of refraction for yellow light of sodium (589 nm)
LIST-I (Materials) | LIST-II (Refractive Indices) | ||
---|---|---|---|
A. | Ice | I. | 1.309 |
B. | Rock salt (NaCl) | II. | 1.460 |
C. | CCl₄ | III. | 1.544 |
D. | Diamond | IV. | 2.417 |
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Compton Effect | IV. | Scattering |
B. | Colors in thin film | II. | Interference |
C. | Double Refraction | III. | Polarization |
D. | Bragg's Equation | I. | Diffraction |
Choose the correct answer from the options given below:
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: