Step 1: Analyze the circuit.
The mutual inductance and self-inductance values are used to calculate the equivalent impedance.
Given Circuit:
The circuit diagram is shown below:
\[
\text{Source Frequency} = 5000 \, \text{rad/s}.
\]
Important points to remember:
Magnetic Aiding:
\[
\begin{aligned}
L_1 \pm M, \, L_2 \pm M \quad \text{as shown in the diagram.}
\end{aligned}
\]
Magnetic Opposition:
\[
\begin{aligned}
L_1 \mp M, \, L_2 \mp M \quad \text{as shown in the diagram.}
\end{aligned}
\]
Step 1: Convert the values of inductors and capacitors into their equivalent impedance.
For an inductor, the impedance is given by:
\[
X_L = j \omega L.
\]
For a capacitor, the impedance is:
\[
X_C = \frac{-j}{\omega C}.
\]
Using the given values:
\[
X_{L_a} = j \omega L_a = j (5000)(120 \times 10^{-3}) = j 600 \, \Omega,
\]
\[
X_{L_b} = j \omega L_b = j (5000)(4 \times 10^{-3}) = j 20 \, \Omega,
\]
\[
X_{M} = j \omega M = j (5000)(5 \times 10^{-3}) = j 25 \, \Omega,
\]
\[
X_{C} = \frac{-j}{\omega C} = \frac{-j}{5000 \cdot (50 \times 10^{-6})} = -j 4 \, \Omega.
\]
Step 2: Redraw the circuit with the calculated impedance values.
The simplified circuit diagram is shown below.
Step 3: Simplify the circuit to find the equivalent impedance.
Using the series and parallel combinations:
\[
X_{\text{eq}} = j 600 + \frac{(-j 25) \times (-j 4)}{-j 25 + (-j 4)}.
\]
Simplify:
\[
X_{\text{eq}} = j 600 + \frac{100}{-j 29} = j 600 + \frac{j 100}{29}.
\]
Finally:
\[
X_{\text{eq}} = j 600 + j 3.45 \approx j 603.45 \, \Omega.
\]
Step 4: Calculate \( Z_{\text{th}} \) (Thevenin Impedance).
Using the values:
\[
Z_{\text{th}} = 4 + \frac{4 \times 2}{6}.
\]
Simplify:
\[
Z_{\text{th}} = 4 + \frac{8}{6} = \frac{24 + 8}{6} = \frac{32}{6} = 5.33 \, \Omega.
\]
Final Answer: The Thevenin impedance is:
\[
Z_{\text{th}} = 5.33 \, \Omega.
\]
Step 2: Perform Thevenin equivalent calculations.
After solving for \( Z_{th} \):
\[
Z_{th} = 5.32 \, \Omega \, \text{to} \, 5.34 \, \Omega
\]