Given : \(\log_{\sqrt3}(x)+\frac{\log_x(25)}{\log_x(0.008)}=\frac{16}{3}\), which can be stated as :
⇒ 2 log3x + log0.0825 = \(\frac{16}{3}\)
⇒ 2 log3x + \(\log_{\frac{8}{1000}}\)25 = \(\frac{16}{3}\)
⇒ 2 log3x + \(\log_{5^{-3}}(5)^2=\frac{16}{3}\)
⇒ 2 log3x - \(\frac{2}{3}=\frac{16}{3}\)
⇒ 2 log3x = \(\frac{16}{3}+\frac{2}{3}\)
⇒ 2 log3x = 6
⇒ log3x2 = 6
⇒ x2 = 36
Therefore, log3 (3.x2)
= log3 (3.36)
= log3 37
= 7
So, the correct option is (C): 7.
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :