The given equation is:
\(\log_{\sqrt{3}}(x) + \frac{\log_x(25)}{\log_x(0.008)} = \frac{16}{3}\)
The equation can be rewritten as:
\(⇒ 2 \log_3(x) + \log_{0.008}(25) = \frac{16}{3}\)
We can express the second logarithmic term using the property of logarithms:
\(⇒ 2 \log_3(x) + \log_{\frac{8}{1000}}(25) = \frac{16}{3}\)
We know that:
\(log_{\frac{8}{1000}} 25 = \log_5(25)^{\left(-3\right)} = \frac{2}{3}\)
Substituting this value into the equation gives:
\(⇒ 2 \log_3(x) - \frac{2}{3} = \frac{16}{3}\)
Adding \(\frac{2}{3}\) to both sides:
\(⇒ 2 \log_3(x) = \frac{16}{3} + \frac{2}{3} = 6\)
Now, divide both sides by 2:
\(⇒ \log_3(x^2) = 6\)
This implies:
\(⇒ x^2 = 3^6\)
The final equation is:
\(log_3(3 \cdot x^2) = log_3(3 \cdot 3^6) = log_3(3^7) = 7\)
Therefore, the correct option is (C): 7.
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: