Question:

For some positive real number \(x\) , if  \(log_{\sqrt 3}(x)+\frac{log_x(25)}{log_x(0.008)}=\frac{16}{3}\), then the value of \(log_3(3x^2)\) is 

Updated On: Oct 24, 2024
  • 4
  • 6
  • 7
  • 9
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given : \(\log_{\sqrt3}(x)+\frac{\log_x(25)}{\log_x(0.008)}=\frac{16}{3}\), which can be stated as :

⇒ 2 log3x + log0.0825 = \(\frac{16}{3}\)

⇒ 2 log3x + \(\log_{\frac{8}{1000}}\)25 = \(\frac{16}{3}\)

⇒ 2 log3x + \(\log_{5^{-3}}(5)^2=\frac{16}{3}\)

⇒ 2 log3x - \(\frac{2}{3}=\frac{16}{3}\)

⇒ 2 log3x = \(\frac{16}{3}+\frac{2}{3}\)
⇒ 2 log3x = 6
⇒  log3x2 = 6
⇒ x2 = 36
Therefore, log3 (3.x2)
= log3 (3.36)
= log3 37
= 7

So, the correct option is (C): 7.

Was this answer helpful?
1
2