Given
\(\frac{1}{\sqrt{y}+\sqrt{z}}\ \text{is}\) the arithmetic mean of \(\frac{1}{\sqrt{x}+\sqrt{z}}\ \text{and}\)\(\frac{1}{\sqrt{x}+\sqrt{y}}\)
\(\frac{2}{\sqrt{y}+\sqrt{z}}=\frac{1}{\sqrt{x}+\sqrt{z}}+\frac{1}{\sqrt{x}+\sqrt{y}}\)
\(⇒\)\(2(\sqrt{x} + \sqrt{z})(\sqrt{x} + \sqrt{y}) = (\sqrt{y} + \sqrt{z})(\sqrt{x} + \sqrt{y} + \sqrt{x} + \sqrt{z})\)
\(⇒\)\(2(x + \sqrt{xy} + \sqrt{xz} + \sqrt{yz}) = 2\sqrt{xy} + y + \sqrt{yz} + 2\sqrt{xz} + \sqrt{yz} + z\)
\(⇒\ 2x=y+z\)
Therefore, x is the arithmetic mean of y and z, y, x, and z are in A.P
The correct option is (A): \(y ,x\) and \(z\) are in arithmetic progression.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: