Question:

For some positive and distinct real numbers \(x ,y\), and \(z\) , if \(\frac{1}{\sqrt{ y}+ \sqrt{z}}\) is the arithmetic mean of \(\frac{1}{\sqrt{x}+ \sqrt{z}}\) and \(\frac{1}{\sqrt{x} +\sqrt{y}}\) , then the relationship which will always hold true, is

Updated On: Aug 17, 2024
  • \(y ,x\), and \(z\) are in arithmetic progression
  • \(\sqrt{x}, \sqrt{y}\) , and \(\sqrt{z}\) are in arithmetic progression
  • \(x ,y\), and \(z\) are in arithmetic progression
  • \(\sqrt x, \sqrt z\) , and \(\sqrt y\) are in arithmetic progression
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given
\(\frac{1}{\sqrt{y}+\sqrt{z}}\ \text{is}\) the arithmetic mean of  \(\frac{1}{\sqrt{x}+\sqrt{z}}\ \text{and}\)\(\frac{1}{\sqrt{x}+\sqrt{y}}\)
\(\frac{2}{\sqrt{y}+\sqrt{z}}=\frac{1}{\sqrt{x}+\sqrt{z}}+\frac{1}{\sqrt{x}+\sqrt{y}}\)

\(⇒\)\(2(\sqrt{x} + \sqrt{z})(\sqrt{x} + \sqrt{y}) = (\sqrt{y} + \sqrt{z})(\sqrt{x} + \sqrt{y} + \sqrt{x} + \sqrt{z})\)

\(⇒\)\(2(x + \sqrt{xy} + \sqrt{xz} + \sqrt{yz}) = 2\sqrt{xy} + y + \sqrt{yz} + 2\sqrt{xz} + \sqrt{yz} + z\)

\(⇒\ 2x=y+z\)
Therefore, x is the arithmetic mean of y and z, y, x, and z are in A.P 
The correct option is (A): \(y ,x\) and \(z\) are in arithmetic progression.

Was this answer helpful?
0
0

Questions Asked in CAT exam

View More Questions

Notes on Arithmetic Progression