for some a,b,c ∈ \(\N\), let f(x) = ax-3 and g(x)=xb+c, x ∈ \(\R\). If (fog)-1 (x) = \((\frac{x-7}{2})^{\frac{1}{3}}\) then (fog) (ac) + (gof) (b) is equal to _________ .
The correct answer is 2039
Let fog(x)=h(x)
⇒h−1(x)=(2x−7)31
⇒h(x)= fog (x)=2x3+7
fog (x)=a(xb+c)−3
⇒a=2,b=3,c=5
⇒fog(ac)=fog(10)=2007
g(f(x)=(2x−3)3+5
⇒gof(b)=gof(3)=32
⇒sum=2039
Match List-I with List-II
| List-I | List-II |
|---|---|
| (A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
| (B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
| (C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
| (D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is:
f(x) is said to be differentiable at the point x = a, if the derivative f ‘(a) be at every point in its domain. It is given by

Mathematically, a function is said to be continuous at a point x = a, if
It is implicit that if the left-hand limit (L.H.L), right-hand limit (R.H.L), and the value of the function at x=a exist and these parameters are equal to each other, then the function f is said to be continuous at x=a.

If the function is unspecified or does not exist, then we say that the function is discontinuous.