Question:

For Ξ±, Ξ² ∈ R , Ξ± β‰  Ξ², if βˆ’2 and 5 are the eigenvalues of the matrix 𝑀=[1βˆ’π›Ό1+𝛽𝛽 𝛼+𝛽] and 𝑋 = [π‘₯1 π‘₯2 ] is an eigenvector of 𝑀 associated to βˆ’2, then\(M=\begin{bmatrix} 1-Ξ±& 1+Ξ²\\ Ξ² & a+B& \end{bmatrix}\)
and 𝑋 = \(\begin{bmatrix}  X_1\\ X_2 \end{bmatrix}\) is an eigenvector of 𝑀 associated to βˆ’2, then

Updated On: Nov 18, 2025
  • 2π‘₯1 + π‘₯2 = 0
  • 𝛽 βˆ’ 𝛼 = 5
  • 𝛼 2 βˆ’ 𝛽 2 = 5
  • π‘₯1 + 3π‘₯2 = 0
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B, C

Solution and Explanation

To solve the given problem, we need to follow a step-by-step approach, focusing on the properties of eigenvalues and eigenvectors.

Given the matrix: 

\(M=\begin{bmatrix} 1-Ξ± & 1+Ξ² \\ Ξ² & Ξ±+Ξ² \end{bmatrix}\)

It is provided that the eigenvalues of this matrix are -2 and 5. This information gives us essential conditions about the matrix. The eigenvalues of a 2x2 matrix \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\) are given by the solution to the characteristic equation:

\(Ξ»^2 - (a+d)Ξ» + (ad-bc) = 0\)

For this problem, equating the trace (sum of eigenvalues) and determinant (product of eigenvalues) to the matrix properties:

  • Trace Condition: The sum of eigenvalues equals the sum of the diagonal elements.

\(-2 + 5 = (1-Ξ±) + (Ξ±+Ξ²) = 1 + Ξ²\)

From the above, we find:

\(1 + Ξ² = 3 \Rightarrow Ξ² = 2\)

  • Determinant Condition: The product of eigenvalues equals the determinant of the matrix.

\(-2 \cdot 5 = (1-Ξ±)(Ξ±+Ξ²) - (1+Ξ²)Ξ²\)

\(-10 = (1-Ξ±)(Ξ±+2) - (1+2) \cdot 2\)

Expanding and simplifying, we get:

\(-10 = (Ξ±^2 +2Ξ± - Ξ±^2 +2) - 6\)

\(-10 = 2Ξ± - 4\)

\(2Ξ± = -6 \Rightarrow Ξ± = -3\)

Substituting the values of \(Ξ±\) and \(Ξ²\) back, verify:

\(Ξ² βˆ’ Ξ± = 2 - (-3) = 5\)

\(Ξ±^2 - Ξ²^2 = (-3)^2 - 2^2 = 9 - 4 = 5\)

Verification of eigenvector \(X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\) associated with eigenvalue -2:

Using the eigenvalue equation \(MX = -2X\), we have:

\(\begin{bmatrix} 1-(-3) & 1+2 \\ 2 & -3+2 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -2\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\)

Which results in:

\(\begin{bmatrix}4 & 3 \\ 2 & -1\end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}\)

This gives two equations:

  • \(4x_1 + 3x_2 = -2x_1\) β†’ simplifying gives \(6x_1 + 3x_2 = 0\) β†’ \(2x_1 + x_2 = 0\)

Thus, the correct options are:

  • \(2x_1 + x_2 = 0\)
  • \(\beta - \alpha = 5\)
  • \(\alpha^2 - \beta^2 = 5\)

These match the conditions given by the options.

Was this answer helpful?
0
0

Top Questions on Linear Algebra

View More Questions

Questions Asked in IIT JAM EN exam

View More Questions