To solve the given problem, we need to follow a step-by-step approach, focusing on the properties of eigenvalues and eigenvectors.
Given the matrix:
\(M=\begin{bmatrix} 1-Ξ± & 1+Ξ² \\ Ξ² & Ξ±+Ξ² \end{bmatrix}\)
It is provided that the eigenvalues of this matrix are -2 and 5. This information gives us essential conditions about the matrix. The eigenvalues of a 2x2 matrix \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\) are given by the solution to the characteristic equation:
\(Ξ»^2 - (a+d)Ξ» + (ad-bc) = 0\)
For this problem, equating the trace (sum of eigenvalues) and determinant (product of eigenvalues) to the matrix properties:
\(-2 + 5 = (1-Ξ±) + (Ξ±+Ξ²) = 1 + Ξ²\)
From the above, we find:
\(1 + Ξ² = 3 \Rightarrow Ξ² = 2\)
\(-2 \cdot 5 = (1-Ξ±)(Ξ±+Ξ²) - (1+Ξ²)Ξ²\)
\(-10 = (1-Ξ±)(Ξ±+2) - (1+2) \cdot 2\)
Expanding and simplifying, we get:
\(-10 = (Ξ±^2 +2Ξ± - Ξ±^2 +2) - 6\)
\(-10 = 2Ξ± - 4\)
\(2Ξ± = -6 \Rightarrow Ξ± = -3\)
Substituting the values of \(Ξ±\) and \(Ξ²\) back, verify:
\(Ξ² β Ξ± = 2 - (-3) = 5\)
\(Ξ±^2 - Ξ²^2 = (-3)^2 - 2^2 = 9 - 4 = 5\)
Verification of eigenvector \(X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\) associated with eigenvalue -2:
Using the eigenvalue equation \(MX = -2X\), we have:
\(\begin{bmatrix} 1-(-3) & 1+2 \\ 2 & -3+2 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -2\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\)
Which results in:
\(\begin{bmatrix}4 & 3 \\ 2 & -1\end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}\)
This gives two equations:
Thus, the correct options are:
These match the conditions given by the options.
The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
| Player Y | ||
|---|---|---|
| C | NC | |
| Player X | X: 50, Y: 50 | X: 40, Y: 30 |
| X: 30, Y: 40 | X: 20, Y: 20 | |