Question:

For nonnegative integers $s$ and $r$, 
let\(\begin{pmatrix}s \\ r\end{pmatrix}=\begin{cases}\frac{s !}{r !(s-r) !} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{cases}\).
For positive integers $m$ and $n$,
let $g(m, n)-\displaystyle\sum_{p=0}^{m+n} \frac{f(m, n, p)}{\begin{pmatrix}n+p \\ p\end{pmatrix}}$ 
where for any nonnegative integer $p$, 
$f(m, n, p)=\displaystyle\sum_{i=0}^{p}\begin{pmatrix}m \\ i\end{pmatrix}\begin{pmatrix}n+i \\ p\end{pmatrix}\begin{pmatrix}p+n \\ p-i\end{pmatrix}$.
Then which of the following statements is/are TRUE?

Updated On: Apr 25, 2024
  • $g ( m , n )= g ( n , m )$ for all positive integers $m , n$
  • $g ( m , n +1)= g ( m +1, n )$ for all positive integers $m , n$
  • $g (2 m , 2 n )=2 g ( m , n )$ for all positive integers $m , n$
  • $g (2 m , 2 n )=( g ( m , n ))^{2}$ for all positive integers $m , n$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B, D

Solution and Explanation

(A) $g ( m , n )= g ( n , m )$ for all positive integers $m , n$
(B) $g ( m , n +1)= g ( m +1, n )$ for all positive integers $m , n$
(D) $g (2 m , 2 n )=( g ( m , n ))^{2}$ for all positive integers $m , n$
Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions