1. Analyze \( a_n \): - Expand \( \sin^2\left(\frac{1}{n}\right) \) using the small-angle approximation \( \sin(x) \approx x \) for \( x \to 0 \): \[ \sin^2\left(\frac{1}{n}\right) \approx \left(\frac{1}{n}\right)^2. \] - Substituting into \( a_n \): \[ a_n \approx \sqrt{n} \cdot \frac{1}{n^2} \cdot \cos n = \frac{\cos n}{n^{3/2}}. \] - The term \( \frac{\cos n}{n^{3/2}} \) decays rapidly enough for the series \( \sum_{n=1}^\infty a_n \) to converge by comparison with a \( p \)-series where \( p = \frac{3}{2} > 1 \). 2. Analyze \( b_n \): - Expand \( \sin\left(\frac{1}{n^2}\right) \) using \( \sin(x) \approx x \) for \( x \to 0 \): \[ \sin\left(\frac{1}{n^2}\right) \approx \frac{1}{n^2}. \] - Substituting into \( b_n \): \[ b_n \approx \sqrt{n} \cdot \frac{1}{n^2} \cdot \cos n = \frac{\cos n}{n^{3/2}}. \] - As in the case of \( a_n \), the term \( \frac{\cos n}{n^{3/2}} \) decays rapidly enough for the series \( \sum_{n=1}^\infty b_n \) to converge. 3. Conclusion: - Both series \( \sum_{n=1}^\infty a_n \) and \( \sum_{n=1}^\infty b_n \) converge due to the rapid decay of their terms
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100Ο cm3/s. The rate at which the height of the sugar inside the tank is increasing is: