Step 1: Analyze the cosine term. Since \( \cos \theta \) lies in the range \( -1 \leq \cos \theta \leq 1 \), we have: \[ |\cos \theta| \leq 1. \]
Step 2: Apply the inequality. Thus, the magnitude of the dot product is: \[ |\vec{a} \cdot \vec{b}| = |\vec{a}| |\vec{b}| |\cos \theta| \leq |\vec{a}| |\vec{b}| \times 1. \] Conclusion: Therefore, we have shown that: \[ |\vec{a} \cdot \vec{b}| \leq |\vec{a}| |\vec{b}|. \]