Step 1: Net work in Brayton cycle.
The specific work output is:
\[
W_{net} = W_t - W_c
\]
where \(W_t\) = turbine work, \(W_c\) = compressor work.
Step 2: Temperature relations.
Compressor temperature rise:
\[
T_2 = T_1 \, r_p^{(\gamma - 1)/\gamma}
\]
Turbine exit temperature:
\[
T_4 = T_3 \, r_p^{-(\gamma - 1)/\gamma}
\]
where \(r_p\) = pressure ratio.
Step 3: Net work expression.
\[
W_{net} = c_p \left[(T_3 - T_4) - (T_2 - T_1)\right]
\]
\[
= c_p \left[ T_3 - T_1r_p^{(\gamma - 1)/\gamma} - T_3 r_p^{-(\gamma - 1)/\gamma} + T_1 \right]
\]
Step 4: Optimization condition.
For maximum work,
\[
\frac{dW_{net}}{dr_p} = 0
\]
This yields:
\[
r_p^{\tfrac{\gamma - 1}{\gamma}} = \sqrt{\frac{T_3}{T_1}}
\]
Step 5: Final expression.
Since \(\dfrac{T_3}{T_1} = t\):
\[
r_{p,opt} = t^{\tfrac{\gamma}{2(\gamma - 1)}}
\]
Final Answer:
\[
\boxed{r_{p,opt} = t^{\tfrac{\gamma}{2(\gamma - 1)}}}
\]