To determine which given equation holds for the defined function \( u_g(x, y) \), we begin by calculating the partial derivatives of \( u_g \). The function \( u_g \) is given as:
\(u_g(x,y) = \frac{1}{y} \int_{-y}^{y} g(x+t)\,dt \)
Steps:
Hence, the correct option is: \(\frac{β^2u_g}{βx^2}=\frac{2}{y}\frac{βu_g}{βy}+\frac{β^2u_g}{βy^2}\).
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.